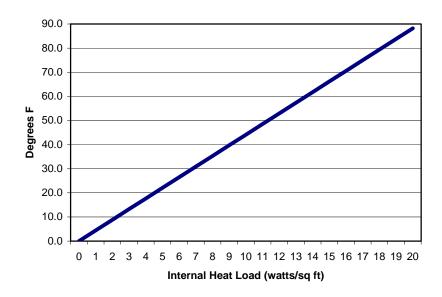


Heat Dissipation in Allied Moulded Non-Metallic Enclosures

Determining Temperature Rise:

The temperature rise inside an enclosed and sealed Allied Moulded fiberglass enclosure can be approximated.


<u>Calculate the enclosure Surface Area</u>: $SA = 2 \times ((A \times B) + (A \times C) + (B \times C)) \div 144$ Note: Enclosure dimensions are A (height), B (width), and C (depth)

<u>Calculate the Internal Heat Load</u>: IHL = Heat Load Value (Watts) ÷ Surface Area Note: Heat load value for the components to be mounted in the enclosure can be obtained from the component supplier. Typically this can be obtained in Watts however; One Watt = 3.413 Btu/hour.

<u>Find Temperature Rise</u>: Use Internal Head Load to find the corresponding temperature rise in the chart below.

Example: Temperature rise in AM30240RT with components that use 200 Watts $SA = 2 \times ((30 \times 24) + (30 \times 11.75) + (24 \times 11.75)) \div 144 = 18.8 \text{ sq. feet}$ $IP = 200 \div 18.8 = 10.6 \text{ Watts/sq. feet}$ Temperature Rise = 47° F

FIBERGLASS ENCLOSURES INTERNAL TEMPERATURE RISE ABOVE AMBIENT

